Ви є тут

Вплив елементів та структури внутрішніх електричних мереж житлового сектору на їх пожежну небезпеку

Автор: 
Коваль Олександр Мирославович
Тип роботи: 
Дис. канд. наук
Рік: 
2008
Артикул:
0408U005758
129 грн
Додати в кошик

Вміст

РОЗДІЛ 2
МОДЕЛЮВАННЯ ЕЛЕКТРОТЕПЛОВИХ ПРОЦЕСІВ В ЕЛЕКТРОМЕРЕЖАХ ПОБУТОВОГО ПРИЗНАЧЕННЯ
2.1. Загальні положення та вимоги до математичного моделювання
Розробка та проектування побутових електричних мереж потребує аналізу їх
електричних режимів з метою вибору параметрів окремих елементів побутових
електромереж. Лише на основі об'єктивної інформації про стан електромагнітних
та електротеплових процесів можна вирішити задачу про створення оптимального
розвитку соціально-побутових електромереж із врахуванням сучасної тенденції
побутової роботизації [64].
Системи електропостачання побутового призначення представляють собою комплекс:
споживачів електричної енергії, провідникових мереж, розподільчих щитових та
засобів захисту схем електропостачання. Оцінити їх теплові режими під час
експлуатації та спрогнозувати можливі наслідки можна методом математичного
моделювання та фізичних експериментів. Під час проведення фізичного
експерименту в лабораторних умовах виникає складність відтворення реальної
схеми мереж з усіма її елементами, тобто забезпечення адекватності або
критеріїв подібності. Тому з позиції економічності значно перспективнішим є
метод математичного моделювання. Маючи електрофізичні характеристики та теплові
параметри матеріалів провідників, ізоляції та інших елементів електричних мереж
за допомогою математичної моделі можемо дослідити широке коло пов’язане з
тепловими процесами в провідниках та елементах електричної мережі під час
різних режимів експлуатації. Другою особливістю математичного моделювання
вказаних мереж є те, що маючи реальні параметри елементів побутових
електромереж порівняно можна оцінити температуру нагрівання елементів
електромереж при різних режимах експлуатації. Математичні моделі можна
використовувати при становленні причин виникнення локальних перегрівань та
можливих загорань в електричних мереж.
Якщо виникає потреба вибору захисних пристроїв (запобіжників чи автоматичних
вимикачів), то тут можна з достатньою для практики точністю застосовувати
моделювання на рівні стаціонарних чи перехідних процесів. В разі потреби оцінки
швидкості нагрівання елементів електричних мереж необхідно використовувати
динамічні математичні моделі на основі системи диференційних рівнянь, які
описують одночасно електричні і теплові процеси. Математичні моделі для оцінки
стаціонарних процесів вимагають визначення початкових умов, що є для таких
випадків окремою складною задачею. Для математичних моделей динамічних
процесів, які відбуваються в часі, виникає задача вибору методу чисельного
інтегрування, оскільки електричні і теплові процеси відбуваються із суттєво
різними сталими часу, а значення елементів матриці Якобі відрізняються на
кілька порядків, що характеризує жорсткість системи диференційних рівнянь [65,
66].
Наступна особливість щодо формування математичних моделей полягає в тому, що
процес моделювання повинен забезпечити необхідну точність отримуваних
результатів, які були б придатні для практичного використання. Згідно теорії
похибок під час чисельного інтегрування найбільш вагомими є похибки, викликані
початковими умовами і точністю представлення динамічних характеристик
нелінійних елементів та похибки методу інтегрування і округлень. Якщо похибку
округлень можна зменшити за рахунок вибору довжини числового слова, тобто
кількості значущих цифр після коми, то решта похибок слід зменшувати шляхом
адекватного відтворення характеристик та граничних умов. Таким чином під час
формування математичних моделей та їх чисельної реалізації слід забезпечити їх
адекватність в першу чергу за критерієм точності, оскільки питання швидкості на
існуючому рівні розвитку комп’ютерних засобів не є актуальним.
На результати моделювання теплових процесів суттєво впливають коефіцієнтами
теплопередачі, теплообміну, теплоємності інших окремі з яких визначені
наближено для сучасних електроізоляційних матеріалів, тому в ході моделювання
відбувається їх перегрівання на основі співставлення реальних і модельованих
процесів. Важливим також є врахування конвективного та радіаційного способу
відведення тепла від елементів мережі однак для температурних зон до 100 оС ці
способи відведення тепла є мало значимі.
Математична модель електротеплових процесів в побутових електромережах повинна
коректно відображати взаємодію електричних параметрів та теплових характеристик
елементів електричних мереж. Дотримання цих вимог забезпечить необхідну
точність моделювання стаціонарних, перехідних та динамічних процесів побутових
електромереж при нормальних умовах та в режимах перевантажень чи аварій [66,
67].
2.2 Математична модель стаціонарних теплових процесів в електричних мережах
Найтривалішими в часі є стаціонарні електротеплові режими в електричних мережах
побутового призначення, хоча правильніше було б назвати квазістаціонарні.
Мова йде про те, що будь який електромагнітний перехідний процес, який
відбувається у побутових електромережах, закінчується дуже швидко, оскільки
сталі часу електромагнітних перехідних процесів у таких мережах є надзвичайно
малими (в межах 10-4-10-5с), однак величина навантаження може змінюватись
досить часто. Разом з тим теплові перехідні процеси характеризуються сталими
часу від кількох одиниць до кількох десятків секунд, а це означає, що тепловий
перехідний процес, який завжди є аперіодичним в таких мережах, закінчується за
кілька хвилин.
Математична модель стаціонарних теплових процесів призначена для оцінки
розподілу температури в будь якому місці поперечного переpізу провідників та їх
ізоляції, оскільки шляхом вимірювання можна визначити значення температури л